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A B S T R A C T

Knowledge infrastructure is an intellectual framework for creating, sharing, and distributing knowledge. In this
paper, we use knowledge infrastructure to address common barriers to entry into numerical modeling in Earth
sciences as demonstrated in three computational narratives: physical process modeling education, replicating
published model results, and reusing published models to extend research. We outline six critical functional
requirements: 1) workflows designed for new users; 2) community-supported collaborative web platform; 3)
distributed data storage; 4) software environment; 5) personalized cloud-based high-performance computing
platform; and 6) a standardized open source modeling framework. Our methods meet these functional re-
quirements by providing three interactive computational narratives for hands-on, problem-based research using
Landlab on HydroShare. Landlab is an open-source toolkit for building, coupling, and exploring two-dimensional
numerical models. HydroShare is an online collaborative environment for the sharing of data and models. We
describe the methods we are using to accelerate knowledge development by providing a suite of modular and
interoperable process components that allows students, domain experts, collaborators, researchers, and sponsors
to learn by exploring shared data and modeling resources. The system is designed to support uses on the con-
tinuum from fully-developed modeling applications to prototyping research software tools. Landlab notebooks
are available for interactive computing on HydroShare at https://doi.org/10.4211/hs.
fdc3a06e6ad842abacfa5b896df73a76 and for further development on Github at https://zenodo.org/badge/
latestdoi/187289993.

1. Introduction

Modeling in Earth sciences began with the use of hand-written
mathematical formulas that were developed from observational evi-
dence, conjecture, or hypothesis, and shared through conversation and
correspondence. As richness and complexity of our available Earth

observations have grown in parallel with technological advances in
computational resources (supercomputing, high-performance com-
puting, and cloud computing), our models now focus on couplings
among atmospheric, hydrologic, ecologic, geomorphic and human-im-
pacted processes (e.g., Tucker and Hancock, 2010; Yetemen et al.,
2015a, b; Han et al., 2015, Anders et al., 2008; Pande and Sivapalan,
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2017). Advances in internet-based cyberinfrastructure includes com-
putational systems, data and information management, advanced in-
struments, visualization environments, and people, all linked together
by software and advanced networks to improve scholarly productivity
and enable knowledge breakthroughs and discoveries not otherwise
possible. This digital infrastructure expands our capacity for structured
collaborations in research (Edwards et al., 2013). However, these
technological advances often come at the expense of raising the tech-
nological bar for entry into numerical modeling. Here, with examples
from Earth science, we discuss how to lower this bar with that include
three key features: 1) a community platform that allows dynamic in-
teractions among developers, researchers, and new users; 2) clear
documentation of theoretical and mathematical details that are often
lost for new users of complex model programs; and 3) model re-
producibility. For example, sharing the code and data within a com-
munity portal with computational capacity allows new users to easily
find and test training materials, developers to easily distribute open
workshop materials, and communities to build new research networks.
Further, as technology is integrated in the research with greater so-
phistication, it is increasingly a challenge to keep the fundamental
equations that define the driving assumptions in the model structure
accessible to software users. Using methods such as inclusion of equa-
tions and references in online documents, can avoid the ‘black box’
syndrome and improve ease of learning, transparency, and usability of
the modeling code. Communicating what can be expected to be known
by using the research tool provides the Domain of Applicability
(Netzeva et al., 2005), or builds into the system (Edwards et al., 2013)
to be clear on the purpose and limits of the model; what can be ex-
pected to be known by using the research tool. Experimental design is
addressed by illustrating three different areas where model reproduci-
bility can have an impact on advancing science: classroom and peer-to-
peer education, replicating published results, and reusing models to
build new research products.

Knowledge infrastructure is an emerging intellectual framework to
understand and improve how people create, share, interpret observa-
tions and modeled results, and distribute knowledge, which has dra-
matically changed and is continually transformed by internet technol-
ogies and advanced cyberinfrastructure. Knowledge infrastructure is
most simply defined as “robust networks of people, artifacts, and in-
stitutions that generate, share, and maintain specific knowledge about
the human and natural worlds” (Borgman et al., 2015). In Earth and
hydrologic sciences, interpreting observational and model simulated
data is a fundamental task, but systematic acquisition of data for in-
terpretations and machine readability is not common practice among
environmental research infrastructures (Stocker et al., 2018). Knowl-
edge infrastructure advances us beyond cyberinfrastructure, which is
generally limited to distributed computer, information, and commu-
nication technologies, by including networks of groups and institutions,
and the cultural practices of developing and sharing computational
narratives (Brooks, 1996; Perez and Granger, 2015). Computational
narratives are the algorithmic processes involved in creating and in-
terpreting computed representations (Mani, 2013). In our case, the al-
gorithmic processes are Earth surface models, and the computed re-
presentation is the results of the analytical research and how those
results are summarized. Recent developments in the use of advanced
cyber-infrastructure in Earth science include tools used to support hy-
droinformatics, such as HydroShare (Tarboton et al., 2014a; Tarboton
et al., 2014b, 2018) and the CUAHSI JupyterHub service (Castronova,
2018; Perez and Granger, 2015). Development efforts concentrate on
the application of information and communication technologies (ICTs)
targeted for geospatial analytics (Yin et al., 2017) and hydrologic data
types and models (Horsburgh et al., 2016a; Morsy et al., 2017; Strauch
et al., 2018) by providing resources for open-source practices, including
sharing of data and models, and providing online computational re-
sources, i.e. cloud computing. With expert knowledge or user experi-
ence designed to support non-experts, these platforms can be effectively

used for expanding and broadening our capacity to investigate hydro-
logic and Earth system processes.

In model-based investigations, reproducibility increases confidence
in results and improves interpretation about what results do and do not
mean; lack of reproducibility limits the expansion and growth of
knowledge (Hutton et al., 2016; Nosek et al., 2015). The term re-
producibility has many aspects which can be explored further in other
work (Essawy et al., 2018; Yuan et al.,2018; Stagge et al.,2019), but we
broadly use the term to ecompass multiple aspects, including avail-
ability, computational reproducibility, portability, experimental re-
plicacability, and accessibility. The advancement of knowledge and
lowering the barriers to reproducibility can be enabled by knowledge
infrastructure that supports collaborative research, education, and
curriculum development, and improves standards for technology
practices for publication of research. Web-based interactive computing
environments, such as Jupyter Notebooks (Perez and Granger, 2015),
are designed to execute models and perform data analytics, and have
become increasingly prevalent to improve reproducibility of research in
the past few years (Shen, 2014), especially with early adopters in the
biological sciences (Perkel, 2019; Gross et al., 2014; Ragan-Kelley et al.,
2013; Ding and Schloss, 2014). Francis (2018) created a reference of
Jupyter Notebooks currently available on the web, with limited ex-
amples of experiments in the Earth sciences community. One of the first
interactive notebooks that we know of was published by Shen (2014),
which provided computational resources for executing code snippets
exploring astronomy data. This was available online as an interactive
Notebook for three years (2014–2017), and it was replaced with a static
view of an example execution of the Notebook in November 2017. Luo
et al. (2016) have shown that interacting with web-based models
(through a graphical user interface) in classroom environments im-
proves higher-level thinking and attitudes about complex landscape
evolution models. We do not know of any collections of Notebooks
published with the supporting infrastructure available for authors to
maintain accessible interactive Notebooks for their readers in hydro-
logic sciences and Earth surface modeling communities, or studies on
how interacting with model code improves educational or research
outcomes.

Efforts to provide online computing capacity for Earth science re-
search and education includes landscape evolution modeling such as
the WILSIM model (Luo et al., 2004, 2016), watershed hydrology and
erosion modeling using WEPP (Laflen et al., 1991; Laflen, 1997;
Flanagan et al., 2007), and river-basin environmental modeling using
SWAT (Rajib et al., 2016). While these web-based modeling approaches
lower the bar for model execution, model options and the level of in-
teraction of the users with models are constrained by the limited set of
options envisioned by the developers. These tools rely on graphical user
interfaces (GUI) with limited user inputs (parameter values, or scenario
choices), and they do not provide an interactive software environment
for user collaboration and co-creation of knowledge. To develop a
persistent, collaborative environment that will have a profound trans-
formational effect on our society (Newman, 2003), we need to identify
and overcome the barriers that are currently preventing rapid adoption
of knowledge infrastructure for Earth surface modelers.

This paper is motivated by the following questions: Can current
software infrastructure and research communities (1) facilitate rapid
adoption and scientific advancement of complex Earth surface models, (2)
lower the bar for entry into modeling, (3) improve collaborations among
scientists and science partners, and (4) advance useable science with sus-
tainable open source software? In addressing these questions, our aim is
to explore knowledge infrastructure using advanced data access and
computational resources beyond what an individual scientist would
normally have available (Bandaragoda et al., 2006). We first describe
three emerging open-source modeling practices to lower the bar into
modeling (Methods, Section 2). In our methods, we review basic ele-
ments of knowledge infrastructure and substantiate it with specific
technical details as implemented in HydroShare, the CI platform we use
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in this study. In the results (Section 3), we focus on the use of the
Landlab Earth surface modeling toolkit (Hobley et al., 2017), deployed
on HydroShare. In three use cases that employ emerging open-source
modeling practices to lower barriers in modeling, we provide work-
flows designed with interactive notebooks aimed at Earth science
education, as well as reuse and replication of research models. Our
discussion (Section 4) explores the barriers we have identified, followed
by Conclusions (Section 5) on our approach to address the motivating
questions and current limitations.

2. Methods

2.1. Emerging practices for modeling

The ability to reproduce experiments and share data is expanding.
Open source cyberinfrastructure platforms for research publication are
designed to facilitate the use of existing models by making input data
and model code publicly available online and providing software tools
for pre- and post-processing data, running models, sharing data, and
formally publishing with a digital object identifier (Freeman et al.,
2005; Atkins et al., 2003). Using recent examples in water monitoring
(Horsburgh et al., 2017; Jones et al., 2017; Mihalevich et al., 2017),
landslide modeling (Strauch et al., 2018), and data science (Freire et al.,
2016), we identified three critical open-source technology practices
supported by knowledge infrastructure expected to lead to scientific
discoveries (Sections 2.1.1, 2.1.2, and 2.1.3).

2.1.1. Code development in an open source environment
Evolving software versions, hardware requirements, numerical

methods, and code quality limit the ability to replicate and reuse model
applications. Developing models from a personal computer (PC) re-
quires installing a suite of specialized software tools and access to
computational hardware to visualize, store, and prepare model inputs
and outputs. Thus, reproducing a study by others often depends on the
ability to reproduce the software environment.

2.1.2. Cyber-training in numerical modeling education
The use of numerical models for science education should not di-

minish the instruction time for basic science. Costs that sometimes arise
from using models in the classroom include time needed for extensive
technological instruction, and technical troubleshooting. These costs
can be avoided by developing software infrastructure that accesses
computational and data intensive models from a web browser. Avoiding
the need for any software installations, enables classroom experiences
for students that focuses time on improved understanding of existing
theory, and is designed to generate curiosity to propose hypotheses and
design further modeling, field, and laboratory experiments.

2.1.3. Cyber-interactions in collaboration
In most academic research projects, skills for code development,

diagnostics, and model execution are limited to a few individuals
(graduate students, postdocs, etc). However, most modelers would
agree that coding errors can be more effectively identified, more user-
friendly codes can be designed, and new research ideas can be devel-
oped when other experts have access to models for evaluation, ex-
perimentation, and testing. When scientists and stakeholders can in-
teract with, execute, and visualize various components of coupled
models used in collaborative projects, the research process leads to
rapid development of ideas and research products, and more useable
science (Lemos et al., 2012).

2.2. Knowledge infrastructure design

Our approach includes the following six methodological, software,
and hardware components (Fig. 1; labels 1-6) that can address the
barriers to computational modeling: 1) User Experience Design is the

conceptual and evolving software design that includes all the practices
developed to efficiently accomplish collaborative online tasks based on
personal, collaborator, and institutional cultural preferences (e.g.
workflow practices for using software to run models, perform data
analysis, and publish research products). The user experience design
guides the development of the framework, and in research software,
includes contributions from both developers and new users; (Section
2.7) 2) community-supported collaborative web platform that interacts
with high performance computing (HPC) and data storage nodes, al-
lows for computationally intensive computing, and supports publishing
and privacy (Section 2.2); 3) data storage that may be distributed to
different locations (Section 2.3); 4) software environment that provides
a library of software and programming languages, supporting model
applications, version control, data analytics, and facilitates the execu-
tion of numerical models (Section 2.4); 5) cloud-based high perfor-
mance computing (CHPC) platform that hosts the software environ-
ment, models, and personal user space (Section 2.5); and 6) a
standardized modeling framework (Section 2.6). The adoption, ongoing
adaptation, and growth of an infrastructure system is fundamentally
dependent on personal research choices, collaborative dependencies,
and institutional policies (Section 2.7). In Section 2.8, we provide ex-
amples that generated design input to component 1) User Experience
Design in order to evolve the the knowledge infrastructure system.

2.2. Community supported collaborative web platform: HydroShare

HydroShare (http://www.hydroshare.org) is an online collaborative
platform developed to address the growing computer modeling, data
storage and sharing needs of the community. It supports the sharing of
both data and models using HydroShare Resources, and facilitates the
execution of numerical models using web apps associated with or linked
to HydroShare. HydroShare is operated by the Consortium of
Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI;
www.cuahsi.org) as a Community Supported Collaborative Web
Platform (Fig. 1, Box 2). A web browser is the interface to HydroShare
and provides access to hydrologic and Earth surface models and data
that are saved as resources in HydroShare. The architecture of Hydro-
Share is designed to support: (1) resource storage, (2) resource ex-
ploration, and (3) actions on resources. These are implemented using
system components that are relatively loosely coupled and interact
through application programming interfaces (APIs). The loose coupling
takes advantage of Services Oriented Architecture (SOA) that enhances
robustness as components can be upgraded and advanced relatively
independently.

2.3.1. Distributed data storage
Content that can be shared within HydroShare is diverse, including

digital objects that represent multiple hydrologic data types, models
and model instances, documents, and other content types commonly
used in hydrologic research (Horsburgh et al., 2016b). A “resource” is
the discrete unit of digital content within HydroShare. Resources are
cast as “social objects” that can be published, collaborated around,
annotated, discovered, and accessed (Horsburgh et al., 2016b). In this
resource-centric approach, a resource is the granular unit used for
management and access control. HydroShare resources include hydro-
logic time series, geographic feature (vector data), geographic raster
(gridded data), multidimensional space-time data sets (e.g., NetCDF),
and composite resources that represent combinations of these data
types, as well as collections that group together different resources.
Model Programs and Model Instances are additional types of content
that can be shared and manipulated within HydroShare. Metadata is
maintained that tracks system-level attributes of the resource, including
timestamps of creation and modification, ownership, access control
rules, etc. Persistent identifiers, access control, versioning, sharing, and
discovery are all managed at the resource level in HydroShare. Hy-
droShare's overarching resource data model is an implementation of the
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Open Archives Initiative Object Reuse and Exchange (OAI-ORE) stan-
dard (Lagoze et al., 2008) that holds metadata in a standardized and
machine-readable way to promote interoperability with other systems.
OAI-ORE is a standard for the description and exchange of web re-
sources. HydroShare uses the Integrated Rule-Oriented Data System
(iRODS) (Moore, 2008; iRODS Consortium, 2016; Yi et al., 2018) as its
distributed network storage back end. iRODS provides a virtual file
system for physical storage distributed across multiple locations and
enables data federation across geographically dispersed institutions (Yi
et al., 2018).

2.3.2. Resource exploration, discovery and management
The primary user interface for HydroShare is the website hosted at

www.hydroshare.org, developed using the Django web framework
(Django, 2018) and Mezzanine content management system
(Mezzanine Project, 2018). Together, these technologies are used to
build a system for archiving data and metadata for each resource; and
provides a landing page where metadata can be entered and edited, or
content files added or removed. In the sharing settings panel, users can
specify sharing status, e.g. private or public, and manage who has ac-
cess to edit or view the content. A resource may be permanently pub-
lished in which case it is precluded from further editing and assigned a
citable digital object identifier (DOI). The Django website also provides
a “My Resources” page for listing data that belong to or have been
shared with each user, a “Discover” page that supports keyword and
map based search for content based on their spatial coverage in-
formation using the Apache SOLR search platform (Solr Project, 2018),
and a “Collaborate” page for users to create or join groups aligned
around specific research topics. Collectively these web pages provide a
system where users can discover and manage the content to which they
have access, including changing access control settings, and creating
new content. The business logic of resource and content types, and
access control is all managed using standard Python Django software
packages.

2.3.3. Actions on resources through web apps
The HydroShare repository, broadly consisting of iRODS middle-

ware for managing data storage and a Django website for content dis-
covery and management, is extended by independent web applications
that allow users to perform actions on HydroShare data. Using a ser-
vices-oriented software pattern, HydroShare has been designed to

support this interaction with 3rd-party applications using a
Representative State Transfer (REST) application programming inter-
face (API). The industry-standard OAuth protocol is used to manage
authentication and interface with HydroShare's access and control
model, which is necessary to support interaction with remotely hosted
web applications via the API. Flexible web app launching functionality
has been established through a HydroShare resource type that defines
the URL and parameters for invoking the web application. These web
app resources can be created by any HydroShare user to interact with
3rd-party web applications that are designed to act on HydroShare
content. HydroShare web applications can be hosted anywhere and
have the potential to provide users with a gateway to high performance
computing.

2.4. Software environment: CUAHSI JupyterHub

This paper makes use of a JupyterHub web application developed
and maintained by CUAHSI (https://jupyter.cuahsi.org) that leverages
Jupyter notebook technology. Jupyter notebooks are an effective way
to document research analysis, workflows, and modeling procedures in
a reproducible manner (Kluyver et al., 2016). The CUAHSI JupyterHub
service is under active development to support (1) computationally
intensive research, (2) data intensive research, (3) education and the
dissemination of knowledge, and (4) reproducible science. These goals
are made possible through the development of data transfer mechan-
isms to move data between HydroShare and the JupyterHub environ-
ment as seamlessly as possible. Moreover, HydroShare provides a me-
chanism for users to launch notebook workflows and their associated
datasets into a pre-configured, isolated, remote compute environment.
Each compute environment is created on-the-fly and contains a per-
sistent data store for performing hydrologic analysis in a manner that is
insulated from all other users. This is possible by leveraging operating-
system-level virtualization software such as Docker (Merkel, 2014).
Each user instance runs the Ubuntu Linux operating system and is pre-
configured with scientific Python and R libraries, software for inter-
acting with the HydroShare REST API, and various physical models
including Landlab. A typical workflow is to launch the CUAHSI Jupy-
terHub web application from a HydroShare resource, programmatically
collect any necessary data using the HydroShare REST API, perform
modeling and analysis, and finally save results back to HydroShare.
After these data (i.e., Jupyter notebook and data files) are saved back to

Fig. 1. Illustration of six basic elements
for a knowledge infrastructure for in-
teractive community modeling and ex-
ploration. Research software commu-
nities maintain support of operations
between Docker Containers and soft-
ware environment. Domain science
communities maintain support for ver-
sion control and user communications
specific to modeling frameworks.
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the HydroShare repository, they can be shared with other users and
groups who can further analyze them in a similar way. This back and
forth sharing enables collaboration in the development and analysis of
Landlab models using the HydroShare repository and linked Jupy-
terHub web app.

2.4.1. Community supported development and operation
CUAHSI supports the development and operation of CUAHSI

JupyterHub as part of the HydroShare project (Idaszak et al., 2017) as
well as through their cooperative agreement with NSF (see Acknowl-
edgements). Development and operation efforts are divided into two
categories, (1) system maintenance and user support, and (2) hydro-
logic research and modeling. The first category focuses primarily on
maintaining existing capabilities, updating libraries, and performing
system-level maintenance and upgrades. This includes overseeing the
installation and compiling of Python (versions 2.7 and 3.6), R (version
3.4), scientific libraries such as Pandas, Dakota (Adams et al., 2014),
SpotPy, NumPy, etc., and modeling applications, e.g. MODFLOW 6,
Landlab, TauDEM. The latter category consists of collaborative research
to lower the barrier of entry to modern modeling applications such as
the Structure for Unifying Multiple Modeling Alternatives (SUMMA)
and the National Water Model (NWM) configuration of WRF-Hydro.
These efforts are coordinated using an open source codebase in which
code contributions undergo a review process and formal release sche-
dule. Users provide feedback and requests via GitHub Issues with “bug”
and “enhancement” tickets.

2.4.2. Tools and models
One of the goals of CUAHSI JupyterHub is to make it simple for

users to access the software they need without some of the challenges
associated with library dependencies, computer operating system or
platform compatibility and installation challenges. As such CUAHSI
JupyterHub has installed and supports a range of software and tools
commonly used for hydrologic analyses to help users get going quickly
in their work; and, make their work more reproducible. It is intended
for this set of software and models to grow as the platform is further
developed. Currently CUAHSI JupyterHub includes the following

• Landlab, an Earth surface modeling toolkit that this paper focuses on
as an example of the approach (Hobley et al., 2017)
• TauDEM, a set of GIS tools for terrain analysis and watershed deli-
neation (Tarboton, 2018; Tesfa et al., 2011)
• MODFLOW Groundwater Model
• The Structure for Unifying Multiple Modeling Alternatives
(SUMMA) (Clark et al., 2008, 2011, 2015a, 2015b) model frame-
work that allows for formal evaluation of multiple working hy-
potheses on model representations of physical processes.
• iRODS iCommands component for accessing large files efficiently
from the HydroShare repository using iRODS
• Python tools for working with HydroShare Observation Data Model
2 (ODM2) time series content types (Horsburgh et al., 2016a)
• The WaterML R package (Kadlec et al., 2015)

2.4.3. Landlab community
Landlab has four main releases per year (February, May, August,

November) which accompany Landlab's quarterly newsletter “The
Landlab Lookout”. The newsletter alerts users that a new version is
available, describes what's new in the release, and gives a summary of
Landlab-related news (such as Landlab-themed clinics, publications
using Landlab, etc.). Occasionally, intermediate releases will happen in
conjunction with annual community meetings that include presenta-
tions or workshops that feature Landlab (for instance, American
Geophysical Union Annual Meeting (December recurring), Geological
Society of America (July recurring), Community Surface Dynamics
Modeling System (May recurring)). This ensures that participants of
these meetings can use the latest version of Landlab. In addition to

announcing new releases via the newsletter, Landlab developers also
contact directly other researchers that use Landlab. For HydroShare,
this means either submitting issues on the HydroShare JupyterHub
Github repository or sending email directly to CUAHSI JupyterHub
developers. This ensures that these projects provide their users with the
most up-to-date Landlab versions. The role of version control is high-
lighted in Fig. 1, as Domain science community support of research.

2.5. Advanced cyberinfrastructure and CyberGIS-Jupyter

HydroShare has recently been developed to exploit cyberGIS (that
is, geospatial information science and systems based on advanced
computing and cyberinfrastructure) and high-performance computing
(HPC) (Wang, 2010; Wang and Goodchild, 2019). CyberGIS-Jupyter
allows HydroShare Jupyter notebooks to harness HPC resources such as
those provided by the NSF Extreme Science and Engineering Discovery
Environment (XSEDE) and Resourcing Open Geospatial Education and
Research (ROGER) supercomputer (Wang, 2016). Specifically, Cy-
berGIS-Jupyter encompasses the following three major functional
components (Yin et al., 2017):

• JupyterHub is used to handle authentication and schedule standa-
lone Jupyter servers. After authentication, dedicated containers are
sent to the Docker Swarm.
• Docker Swarm is responsible for spawning and managing all Docker
containers across a specific group of virtual machines (the swarm).
The containerization provides fine-grain on-demand provisioning of
cloud infrastructure as a service when a user launches a notebook.
• Batch HPC is adapted to harness distributed parallel computing re-
sources, high-performance storage systems, and cyberGIS software
to greatly expand the capabilities of a typical Jupyter notebook
environment.

2.6. Modeling framework: Landlab and its application on HydroShare

A new paradigm in hydrologic and Earth system modeling is
emerging where software once developed for individual research are
being reconfigured in community open-source research software sys-
tems. In this context, components represent a set of scientific and
software methods used to represent a physical process (e.g flow
routing) and not the entire system of processes (e.g. a distributed hy-
drologic model simulating multiple physical processes in the water
cycle). Landlab is one such system based on a Python-language pro-
gramming library that supports efficient creation and/or coupling of 2D
numerical models (Hobley et al., 2017). It is a framework geared to-
wards (but not limited to) Earth-surface dynamics. Landlab is composed
of three main divisions of code: grid, components, and supporting uti-
lities. The spatial template for modeling is created by the Landlab
ModelGrid class. ModelGrid provides common structured and un-
structured (e.g., Voronoi polygons) data structures where data fields
can be attached to grid elements, and grid elements can be built as a
structured or unstructured grid in a single line of code. Each physical
process is coded into individual Landlab class, and added to the Landlab
library as a Component, providing an ecosystem of hypothesized be-
havior of Earth system processes. Supporting utilities and driver scripts
were developed to pre-process, post-process, and improve workflow
efficiencies for coupling multiple components. Most components op-
erate on, interact with and update grid fields. Components can be
coupled via data exchange over the grid. A model driver is a Python
script developed to import, instantiate, and run a single or multiple
coupled Landlab components. Landlab utilities provide tools for input/
output management and visualization. In this paper we use models for
coupled ecohydrology and spatial vegetation dynamics, flow routing
(Adams et al., 2017), and landslide probability (Strauch et al., 2018)
along with a recently developed climate data handling utility (Phuong
et al., 2019). As with the open-source nature of Landlab, a growing
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community of developers contribute numerical functions, process-based
components, and utilities.

2.7. User experience design for multiple learning pathways

In this section, we describe how the knowledge infrastructure can be
viewed from the lens of a research workflow presented in Appendix A.
Upon publication of a resource and its deployment to users, by sharing
the location of the resource on HydroShare the users begin learning and
exploring the code. Users may be collaborators in a research project,
stakeholders of watershed resources, and/or students. The user may
explore Landlab on HydroShare using the deployed model driver by
changing parameter values of the process components and perhaps
explores other components by adding them to the driver. Or, in the
process of exploring the model, the user may develop their own new
ideas to develop new process representations presented as new com-
ponents in Landlab or develop new ways of data visualization. These
new developments on Landlab components will continue when users
who contribute their work to the Landlab repository track and manage
Landlab version updates and its further deployment on to HydroShare.
These model developments can continue offline by installing and using
Landlab on a personal computer, or other JupyterHub servers.

2.8. Data and models for three computational narratives

To illustrate our methods for lowering the barriers to computational
modeling, we have developed three computational narratives for user
experience (UX) (Table 1). A computational narrative can be considered
a story that can be told about the data by executing scripts that generate
data analysis and visualization in the provided workflow. Recognizing
that every experience is made of many parts that contribute to the
adoption and evolution of tool development, and the narrative (see
Section 4, inductive and/or deductive) can provide a framework for a
user to generate their own story by exploring the science topic with
interactive tools. A UX can be described as a computer-human inter-
action. The importance of UX design is becoming more widely re-
cognized in science and technology development to achieve the desired
outcome of the UX such as improving the knowledge-base and cognitive
capabilities of users (Baldwin, 2013; Glassdoor, 2017). Given that an
experience may be generated by any interaction, we designed three
example computational narratives to generate individual experiences,
share understanding on existing theory, and to open doors for future
developments (Forlizzi and Ford, 2000). In the first case, we give an
example of how to use this infrastructure (Fig. 1) to develop training
and educational materials for classroom curriculum. This example fo-
cuses on the use of flexible components in a modeling framework to
demonstrate two approaches for flow routing, from simple to more
complex solution of the same shallow water equation, with inductive
narrative workflows designed to orient new users to a focused set of
theoretical concepts that can be explored with minimum background in
the computational infrastructure or coding.

In the second case, we illustrate how a researcher may execute a
model to replicate reported findings in a published study on annual
landslide probability. We particularly focus on how the use of a con-
trolled software environment provides easy access to new users of the
tool and facilitates the exploration of other questions associated with
the processes investigated using the same tool and data. This is an ex-
ample of a deductive workflow, where new hypotheses are tested using
a published set of tools and data. In the third computational narrative,
we present a more sophisticated example for executing a published
ecohydrology model, enhanced and applied in a new location. It uses a
component bundling idea for efficient scenario building to explore eco-
hydrologic response to a climatic gradient mediated by elevation. This
example illustrates a research cycle that includes both inductive and
deductive workflows to generate new understanding. Computational
narratives demonstrate how to use knowledge infrastructure to educate, Ta
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replicate, and reuse Earth surface models where the user interacts with
the infrastructure to develop their own story.

Notebooks are designed with up to 10 sections. For example, for the
example (see 4.1), Notebook Section 1 introduces the theory and the
conceptual design of the models. For example, in the first notebook we
begin with the theory of the 1-D Saint Venant equation for transient
shallow water flow, which is at the core of many hydrodynamic models.
Data Science and Cyberinfrastructure methods are provided in Note-
book Section 2.0, followed by Landlab Methods (Notebook Section 3.0).
Notebook Sections 1 to 3 are designed to function as an interactive
textbook or reference. In the section labeled ‘Make Model Decisions’
(Notebook Section 4.0), our aim is to clearly distinguish the component-
based options for designing a model experiment. For example, in the
first notebook we provide options for designing a storm hydrograph
based on the choice of basin, storm intensity, and routing method.
Model Computations (Notebook Section 5.0) and Results (Notebook
Section 6.0) provide code to execute the model, visualize results, and
export data. Discussion (7.0), Conclusions (8.0), and Saving results to
HydroShare (Notebook Section 9.0) are designed to support graduate
level coursework in Hydrologic Processes and Modeling. Finally, users
are provided shell script prompts that can be executed in the Jupyter
Notebook to remove data from the JupyterHub server after completing
their work (Notebook Section 10).

3. Results

In our results we describe three computational narratives we de-
signed to lower barriers to computational modeling using the CI de-
scribed in Section 2. We relied on Juptyer notebooks for sharing the
following computational narratives and designed the sequence of
commentary text and code blocks to be generally useful to Earth surface
modeling research communities. Hanney and Savin-Badem (2013)
suggest that combining project and problem-based learning may be the
best practice for generating engagement, critical thinking, and crea-
tivity, with the use of problem-based learning as an important tool for
providing authentic experiences, highly valued by all learners
(Kokotsaki et al., 2016). The Interactive Landlab notebooks described in
Sections 3.1, 3.2, and 3.3 are available on HydrosShare at https://doi.
org/10.4211/hs.fdc3a06e6ad842abacfa5b896df73a76.

3.1. Notebook 1: exploring runoff hydrographs with landlab

3.1.1. Notebook 1 overview
This notebook provides resources to compare two different flow

routing schemes, kinematic wave and overland flow (2D de Almeida
(2012) solution of the Saint Venant equation), as explained on the
notebook in detail, in two different landscapes for a given rate of
rainfall excess (rainfall in excess of infiltration). The notebook can be
used to investigate process-based questions on the generation of over-
land flow hydrographs across the landscape in relation to the role of
runoff rate, watershed topography, network structure, and surface

roughness, and it allows to compare and contrast the properties of
streamflow hydrographs generated by the two different flow routing
algorithms. To provide a contrast between different landscape shapes,
this notebook uses two domains: a watershed from central Colorado,
Spring Creek, and a modeled rectangular landscape obtained by run-
ning an existing fluvial landscape evolution model driver in Landlab
(Adams et al., 2017). Both landscapes have a drainage area of 36 km2

and a cell size of 30m. Rain falls on the landscape and flows downhill,
driving overland flow and a hydrograph at every location on the
landscape. In this notebook, we track the hydrograph at three points in
the watershed. We recommend that the users review introductory
concepts of overland flow and hydrographs before using this notebook
and develop familiarity with the term's rainfall intensity and duration,
as well as peak discharge, hydrograph time to peak, rising limb and
falling limb. Our aim is to clearly distinguish the component-based
options for designing a storm hydrograph based on the choice of basin,
storm intensity, and routing method.

3.1.2. Notebook 1 interactive steps
The notebook is designed to run the model several times, each time

changing the rainfall characteristics, routing methods or watershed on
which flow is routed. Different combinations of model components (or
‘model instance’) will generate different hydrographs through which
the user can explore how different parameters affect hydrograph
characteristics. We have provided code to import spatial data linked to
the original source of the use of this notebook (Adams et al., 2017)
published on HydroShare, so that code can be reproducibly executed
with the original ascii text files on a personal computer. In initial runs,
the user does not need to change any code, but different scenarios can
be developed by switching between test watersheds by changing model
parameters such as basin_flag to equal “Spring Creek” or to “Square”.
Table 2 lists the parameters used to obtain the results shown in Fig. 2.
To generate a storm hydrograph over a modeled time period; ap-
proximately 50,000 model timesteps (seconds) could take up to ten
minutes of computational run-time (Section 5.0) on existing computer
infrastructure (in development for XSEDE; also possible on commercial
cloud platforms). We illustrated outputs from the flow routing notebook
in Fig. 2. The user selects which Landlab component to run: Kinwa-
veImplicitOverlandFlow or OverlandFlow components.

3.1.3. Impacts on numerical modeling education
Using an interactive notebook as a component of the science and

engineering curriculum is expected to increase student and faculty ac-
cess to modeling tools. Rather than relying on software in a computer
laboratory or asking students to install new software on their compu-
ters, the code can be used in any classroom by every student with access
to any computer with a web browser. The example illustrates how
model methods and output options can be developed to enhance mul-
tifaceted learning experience of the process of interest. In the first no-
tebook there are three main components and various scenarios to ex-
plore: two different watersheds, two routing methods and three
different storms. Students can simultaneously run scenarios by sys-
tematically changing the flags (e.g. routing_method, basin_flag and
storm_flag), re-running all code blocks sequentially, and saving the re-
sulting hydrograph plots for each scenario to use in project reporting or
homework. The two different flow routing methods show the outcome
of including the gradients of fluid pressure and bed elevation, and
friction terms of the shallow water equation with different assumptions
on hydrographs. Multiple locations for plotting hydrographs in two
watersheds will show the role of catchment size and properties.
Different excess rainfall intensities are for exploring how increased
runoff depth change the hydrograph properties. Advanced students may
use the code to build their own visualization, Landlab components, or
model optimizations. Because all students can gain hands on experience
with the model and code during the classroom instruction, it increases
the opportunity and depth of discussions between classmates by

Table 2
Parameters used to obtain Spring Creek High Intensity model comparisons
between kinematic wave and overland flow model.

Variable Parameter Description Value Dimension

hours hours of model run time 6 hours
number_frames number of frames to plot 6 [-]
n Manning's roughness

coefficient
0.03 s/m°(1/3)

Base_runoff_rate Base runoff rate 10 mm/hr
HigherIntensity_runoff_rate High intensity runoff rate 20 mm/hr
Storm_duration Storm duration 2 hours
dt time step for

KinwaveImplicitOverlandFlow
600 seconds
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providing peer-to-peer learning environment.

3.1.4. Notebook 1 access
To run this notebook, go to this HydroShare resource (Appendix A:

Supplementary Data; https://doi.org/10.4211/hs.fdc3a06e6ad84
2abacfa5b896df73a76), click on the blue “Open With” button, select
JupyterHub (conceptually this will bring you to block 4 in Fig. 1). The
system will certify you are a HydroShare user (if not you will be asked
to sign up at https://www.hydroshare.org), download the data and
Notebooks from this HydroShare resource to a personal user space in
the HydroShare cloud. Click on the file explore_routing_tutorial.ipynb.
Alternatively, advanced users (edits are required to remove HydroShare
dependencies) can download the Notebook to run on a personal com-
puter with an installed version of Landlab with instruction available in
the HydroShare ReadMe.md. Further, the Notebook can be directly
downloaded (no requirement to become a HydroShare User) at this
link: explore_routing_tutorial.ipynb, or viewed on Github in the Landlab
organization, https://github.com/ChristinaB/pub_bandaragoda_etal_
ems repository, see the explore_flow_routing folder, for example view at
this link https://github.com/ChristinaB/pub_bandaragoda_etal_ems/
blob/master/explore_routing_tutorial.ipynb.

3.2. Notebook 2: replicate a landslide model to explore fire impacts on slope
instability in a watershed within a regional study

3.2.1. Notebook 2 overview
Landslides are notoriously challenging to predict (van Westen et al.,

2006). A new model developed as a component in Landlab (Land-
slideProbability) offers the ability to predict the probability of shallow
landslide initiation at regional scales. Probability of landsliding is cal-
culated by the infinite-slope stability equation using a Monte Carlo
approach by introducing uncertainty to soil, vegetation, and recharge
variables. This model was first implemented in a 2700 km2 area in the
North Cascades National Park Complex (NOCA) of Washington State
(Fig. 3), where annual probability and return period for shallow land-
slide initiation was mapped for different soil depth products (Fig. 4)
(Strauch et al., 2018). Considering the uncertainty of soil depth, root
cohesion, and mechanical soil properties, the model predicts 20%–40%
of the area with a landslide return period of 1 in 100 years or less
(Fig. 4). In comparison to Notebook 1 designed for classroom use, this
notebook is designed to replicate model results from Strauch et al.
(2018) in Thunder Creek watershed, located within NOCA. It calculates
the probability of shallow landslide initiation at a 30-m rectangular grid
resolution across the watershed using gridded datasets of landscape
characteristics for topography (slope and upslope catchment area), land

Fig. 2. Illustration of flow routing outputs. (a) Elevation map of Spring Creek, central CO with locations (outlet, midstream, upstream) where hydrographs are
plotted. (b, d) Hydrographs plotted at three locations shown in (a) driven by the high intensity rainfall option using KinwaveImplicitOverlandFlow and OverlandFlow
components, respectively. (c, e) Flow depth maps during peak flow for KinwaveImplicitOverlandFlow and OverlandFlow components, respectively. Results were
produced on HydroShare using the Landlab modeling framework.
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use and land cover (vegetation type, root cohesion), soil (internal
friction angle and transmissivity) and annual maximum daily subsur-
face flow recharge rate derived from a previously run hydrologic model.
All the resources needed for model application are obtained from the
existing HydroShare resource from Strauch et al. (2018). Code is pro-
vided to import data from the regional NOCA area and create a subset
of this data covering Thunder Creek watershed through import of a
watershed boundary shapefile. The mean relative wetness and prob-
ability of saturated conditions at each grid cell are also calculated in the
process of calculating the probability of landsliding. The notebook is
designed for exploring the sensitivity of landsliding to environmental
conditions that lead to loss of root cohesion, such as a wildfire or timber

harvest.

3.2.2. Notebook 2 interactive steps
For detailed instructions for Notebook access, see Section 3.1.4 and

use the Jupyter notebook replicate_landslide_model_for_fire.ipynb for this
example. The Notebook is organized with an introduction (Notebook
Section 1.0) to the Infinite Slope Factor of Safety Equation, which
predicts the ratio of stabilizing to destabilizing forces on a hillslope
plane, and the Monte Carlo solution developed to compute probability
of landslide initiation. Data Science and Cyberinfrastructure methods
are provided in Notebook Section 2.0 that describe specifics of acces-
sing existing spatial data, extracting information for the watershed of

Fig. 3. (a) Example debris avalanches (cyan) mapped in three areas within NOCA. Contours are in 100 m intervals. Aerial image source from World Imagery, Esri
Inc.; (b) elevation distribution of the relative frequency of mapped debris avalanche source areas; and (c) High elevation rock and glacier surrounding Spiral Glacier
in North Cascades showing a bedrock glacier cirque with thin barren soils and moraine deposits (photo by John Scurlock with permission), (d) elevation (ft) for
NOCA model extent from Strauch et al. (2018), and (e) for the subset for the Thunder Creek extent. (Figures a–c adapted in entirety from Strauch et al., 2018 under
CC BY 4.0). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Maps show modeled landslide return periods
using Landlab for NOCA overlain with mapped debris
avalanches, including zoomed in areas at top for greater
detail. The uncertainty of soil depth was characterized
from a long-term soil evolution model (M-SD LT).
Cumulative distribution of landslide return periods for
SSURGO soil depth (SSURGO-SD), modeled soil depth
(M-SD), and modeled soil depth considering long-term
dynamics (M-SD LT) scenarios, plotted on a log-log scale
using the Weibull plotting position. (Figure adapted in
entirety from Strauch et al., 2018 under CC BY 4.0).
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interest, followed by Landlab Methods for setting model parameters. In
the Notebook subsection labeled ‘Specify Recharge’’ our aim is to
clearly distinguish the component-based options for studying the im-
pact of assumptions related to recharge and hydrologic forcing on
landslide probability. At the end of this Notebook Section, the number
of Monte Carlo iterations is assigned. In Notebook Section 3.0 (Results),
the model is executed for Thunder Creek and the results are visualized.
Steps for saving results back to HydroShare are listed in Notebook
Section 4.0.

To support graduate level coursework in hydrologic processes and
modeling, we include code blocks that print more explanatory variables
and numerical values to verify results are as reported in Strauch et al.
(2018). In this demonstration notebook, the user imports necessary
Python utilities and libraries and reviews the data needed to execute the
landslide model. Code is provided to import data from the regional
NOCA area and create a subset of this data covering Thunder Creek
watershed through import of a watershed boundary shapefile. One of
four recharge options is specified, and the user loads existing mapped
landslides to overlay on the landscape to compare with the probabilistic
landslide hazard map. The user specifies the number of iterations to use
in a Monte Carlo simulation, then runs the LandslideProbability com-
ponent with two cohesion assumptions. The first cohesion assumption is
based on existing conditions as described in Strauch et al. (2018). The
second cohesion assumption (generating a second model instance) ap-
proximates post-fire conditions where root cohesion is reduced by 70%.
This represents the reduced root cohesion following a wildfire as ex-
isting roots decay following wildfire while new roots begin to re-
generate (Sidle, 1992; Istanbulluoglu et al., 2004). Finally, maps are
generated to compare the results of the stability analyses and results
can be saved back to HydroShare (Fig. 5).

Replication of the Strauch et al. (2018) model in Thunder Creek for
potential postfire conditions clearly show an increase in annual prob-
ability of failure (PF) when the root cohesion is reduced following
wildfire. In the pre-fire simulation, 25% of the landslide is un-
conditionally unstable PF=1.0, meaning that the soil cannot stand on
these slopes. This high annual probability is a conservative estimate and
it is largely due to the use of the SSURGO soil depth product in this
application. Strauch et al. (2018) discussed how more processed based

modeling of soil depth reduce PF to more realistic ranges. With wildfire
impact unconditionally unstable regions grew to>40% of the wa-
tershed. Before fires, ∼40% of the watershed is unconditionally stable,
PF= 0.0. These regions are located in the lower portions of U-shaped
pro-glacial valleys (Fig. 5). With a vegetation disturbance such as
wildfire, this fraction is reduced to<5%, which could lead increased
sediment input from the sides of U-shaped valley directly to the valley
floor, and result in decline of aquatic habitat quality.

3.2.3. Impacts on replicating scientific findings
This notebook is designed for Earth scientists and stakeholders who

are interested in understanding the landslide hazard risk as a prob-
ability in space and time. Running this notebook using Landlab le-
verages the software infrastructure of the Landlab Python toolkit, which
standardizes the handling of spatial-temporal data. Executing the no-
tebook on HydroShare allows the ability to store necessary data, deploy
the model via a super computer, and see the results, which can be
evaluated and shared. Thus, the notebook becomes a one-stop online
platform for demonstrating the landslide model and facilitating ease of
model augmentation. Current barriers to conducting landslide hazard
analysis includes the ability to consider landscape variability, data
uncertainty, and hydrological triggering mechanisms over a large spa-
tial scale. This narrative helps reduce the barrier of significant time
investment to implementing a complex model by providing the neces-
sary data and code for implementing the Landlab LandslideProbability
component. As a result, the researcher can see what the model requires
and how it runs to produce the results presented in a publication. The
notebook can provide an example that can be modified to use in a new
study effectively across the nation. Additionally, the barrier to acces-
sing compiled observations and research products is overcome with this
notebook, including compiled spatial-temporal visualizations that can
be used to communicate results.

3.2.4. Notebook 2 access
A published regional Landlab shallow landslide model has been

developed to explore changes in forest cover at a subcatchment scale,
within the NOCA study area, using the Jupyter notebook re-
plicate_landslide_model_for_fire.ipynb. This notebook is available on
HydroShare at https://doi.org/10.4211/hs.fdc3a06e6ad842abac
fa5b896df73a76. For detailed instructructions on Notebook access,
see Section 3.1.4 or the ReadMe found at the HydroShare link.

3.3. Notebook 3. reuse an ecohydrology model with gridded
hydrometeorology forcing

3.3.1. Notebook 3 overview
In semiarid regions climate change and human impact can lead to

dramatic changes in the composition and organization of Plant
Functional Types (PFTs), such as trees and shrubs, and thus the biomass
production of the ecosystem. Ecohydrologic vegetation dynamics
models are tools that can be used to explore the role of climatology on
the spatial organization of PFTs (Fatichi et al., 2016). In this notebook,
we adapt Landlab's ecohydrologic vegetation dynamics model to illus-
trate how an existing model can be reused by enhancing and developing
a workflow at a new location, in our case for studying the role of ele-
vation-dependent precipitation and temperature gradients on PFTs
using historical gridded daily weather data from Livneh et al. (2015).
Broad elevation bands, low (1200–1700m), medium (1700–2000 m)
and high (2000–2500m) are developed and the ecohydrology model in
Landlab is implemented to simulate the resultant organization of PFTs
at each elevation band in the state of New Mexico on hypothetical flat
surfaces with a spatially homogenous soil textural properties (Fig. 6).

The Landlab ecohydrology model we used is based on CATGraSS
(Cellular Automaton Tree Grass Shrub Simulator), a discrete time
Cellular Automaton (CA) model for spatial evolution of PFTs (Zhou
et al., 2013). In CATGraSS each cell in the domain can be occupied by a

Fig. 5. Landslide probability estimates in the Thunder Creek watershed (photo)
increase given post-fire root cohesion assumptions (70% less), as compared to
the original cohesion assumptions in Strauch et al. (2018). As an example of
knowledge infrastructure functionality, the notebook replicates published
findings, as well as tests the parameter function described in the peer-reviewed
publication. Inset maps and cumulative distribution plots of the spatial prob-
ability of landsliding for pre-fire and post-fire conditions. Photo is looking north
down the broad, glacial carved valley of Thunder Creek (courtesy of Michael
Kirshenbaum and National Park Service).
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single PFT: Tree, Shrub, Grass or left unoccupied as bare soil. The model
couples local ecohydrologic vegetation dynamics, which simulate bio-
mass production based on local soil moisture and actual evapo-
transpiration, with spatial processes for plant establishment and mor-
tality controlled by seed dispersal rules, water stress tolerance, and
space availability. Trees and shrubs disperse seeds to their neighbors.
Grass seeds are assumed to be available everywhere. Establishment of
plants in bare cells is determined probabilistically based on water stress
of PFTs neighboring the bare cells. Plants with lower water stress have
higher probability of establishment. Plant mortality is simulated prob-
abilistically as a result of aging and drought stress. The model is driven
by rainfall pulses (observed or generated), solar radiation and tem-
perature. The latter two variables can also be used to prescribe a sea-
sonal potential evapotranspiration input. In Landlab, the model is im-
plemented as a set of interacting components, each describing a
different element of the coupled system: PrecipitationDistribution, Ra-
diation, PotentialEvapotranspiration, SoilMoisture, Vegetation (component
for local growth), and VegCA (component for cellular automaton rules).

3.3.2. Notebook 3 interactive steps and model results
For detailed instructructions for Notebook access, see Section 3.1.4.

In this example, we constructed a reproducible ecohydrology model
using Landlab and HydroShare for a New Mexico example. For details
on methods designed to reuse the model in another location in the
continental United States, please see the Jupyter notebook re-
use_ecohydrology_gridhydromet.ipynb. In this notebook, we define the
geographic subset (New Mexico) within North America and download
gridded hydrometeorologic data from Livneh et al. (2015) for this re-
gion. Then, we bin this data into three elevation ranges by considering
elevation of centroids of the cells in the gridded dataset and calculate
the spatial means of daily precipitation, maximum and minimum
temperature for each bin. These data are used to force the ecohydrology
model at each elevation bin. The hydrometeorological data handling
steps are executed in a separate notebook named ob-
servatory_gridmet_newmexico.ipynb, located in the folder ogh_newmexico,
which runs a recently developed Python package for automated re-
trieval, preprocessing, and visualization of gridded hydrometeorology
data products (Phuong et al., 2019). As we described in the Jupyter
notebook for this example, we found that the Livneh et al. (2015) data
had a wet bias in precipitation. This bias is corrected by gathering
weather station data (Moore (2016)) that span the range of the eleva-
tion bins we used from the Livneh et al. (2015) data. Time series of bias
corrected annual precipitation and mean monthly temperature show
wetter and cooler conditions as elevation grows (Fig. 7). There is a
positive trend in annual precipitation from 1950 to 1990, followed by a
slight negative trend. In the application of this notebook we suggest the
users to explore the model outputs to see if this precipitation trend had

any impact on the spatial cover fractions of PFTs. Following the bias
correction, the three elevation bins resulted in climatology's from arid,
in the low elevation bin, to semiarid conditions in the high elevation
bin according to the aridity index classification (Nash et al., 1999),
discussed in relation to model results below. Since the historical data
extends only for 64 years (Fig. 7), we extended the record to by tiling
the daily historical data to facilitate longer vegetation development
simulations. The limitation of this approach is that the same climate
repeats itself in every 64 years.

The notebook presents three model runs to explore the role of ele-
vation-dependent changes in the regional climatology on modeled
spatial patterns of PFTs (shrub, grass, tree), and plots the time series of
annual areal cover fraction of each PFT that emerge in the domain for a
model run time of 1500 years. The Notebook begins with an in-
troduction (Notebook Section 1.0) to the Landlab Ecohydrology model,
and the Landlab components used to build this model. Data Science and
Cyberinfrastructure methods are provided (Notebook Section 2.0), fol-
lowed by Climate Methods (Notebook Section 3.0) and Ecohydrology
Modeling using Landlab Methods (Notebook Section 4.0). Finally, in-
structions to Save the results back into HydroShare (Notebook Section
5.0) are given.

Starting with a randomly distributed equal fractions of tree, grass,
shrub vegetation and bare soil, the model organizes the spatial dis-
tribution of PFTs through time. In the low elevation band
(MAP=217mm, PET=1601mm/y, Aridity Index (AI)= 7.34) the
local climate can be considered arid, AI> 5 (Nash et al., 1999).
Drought-tolerant shrub vegetation outcompetes trees, leaving a few
trees behind, while grass gradually retreats, leading to an ecosystem
where shrubs dominate but co-exist with grass as a secondary PFT. The
modeled PFT map (Fig. 8 a, left) shows pockets of grass clusters within
the shrub domain. A few small clusters of trees still exist in very low
fraction of the domain. It would be interesting to explore how the grass-
shrub interplay shape over longer time using this model. Note that the
bell-shaped response of grass, and to an extent, shrubs in this simulation
can be attributed to the trends in the precipitation data in the historical
period, giving 5%–10% boost to the areal grass coverage and ∼5% for
shrubs. The repetition of the bell-shaped response is due to the tiling of
the historical precipitation and temperature data.

In the mid elevations (MAP=285mm, PET=1427mm/y, AI= 5)
in the arid to semiarid climate transition (Nash et al., 1999), the con-
ditions are cooler and wetter compared to low elevation band in this
example. These conditions provide moisture to sustain enough healthy
trees allowing them to outcompete shrubs, as trees can spread seeds to
longer distances than shrubs for establishment, to become the primary
PFT. Grass grows in empty spaces that are not surrounded by healthy
trees or shrubs due to two reasons; 1) the availability of seeds every-
where, 2) lack of PFTs that outcompete them for establishment, as trees

Fig. 6. Map of elevation bands in New Mexico
State (a) used to extract gridded
Hydrometeorological forcing data Elevation bins
are referred to as: Low elevation
(1200–1700m), mid elevation (1700–2000 m),
and high elevation (2000–2500m). The vegeta-
tion patterns from aerial imagery of New Mexico
are distinct within these bands (b).

C. Bandaragoda, et al. Environmental Modelling and Software xxx (xxxx) xxxx

11



and shrubs are competing. This leads to an ecosystem dominated by
trees but co-existing with grass as secondary PFT and shrubs as the
tertiary PFT (Fig. 8 b, right). It will be worthwhile to check whether this
ecosystem can sustain the co-existence of the three PFTs for longer
periods of time.

At high elevations (MAP=353mm, PET=1293mm/y,
AI= 3.66), climate is the coolest and wettest among the three elevation
bands and fall in the semi-arid category (Nash et al., 1999). Trees
dominate shrubs gradually, leading to an ecosystem dominated by
trees, while grass retreats gradually and stabilize. Only few small shrub
clusters remain after 1500 year. Users can run this model longer to see
if shrubs will completely disappear from the ecosystem. In addition to
running the notebooks for a longer period of time as discussed above,
one can also edit the model inputs by modifying the file ecohy-
d_inputs.yaml (located in the folder supporting_files) and explore various
hypotheses, for example by changing the soil texture or modifying ve-
getation parameters to explore how local vegetation dynamics can
impact the spatial organization of plants.

3.3.3. Impacts on use and reuse of research models
This notebook is designed for Earth scientists who are interested in

understanding the influence of climate on long-term climate-driven
changes the spatial vegetation patterns in semi-arid landscapes. The
ecohydrologic vegetation dynamics model built in Landlab leverages
the framework's flexibility for building numerical models from com-
ponents and utilities available in its library. In this example, we have
demonstrated how to use a Landlab model multiple times on
HydroShare using downloaded gridded meteorological datasets with
the OGH library (Phuong et al., 2019).

3.3.4. Notebook 3 access
In this example, we use a ecohydrology model with Landlab and

HydroShare in a New Mexico example, or to reuse in another location in
the continental United States, please see the Jupyter notebook re-
use_ecohydrology_gridhydromet.ipynb. This notebook is available on
HydroShare at https://doi.org/10.4211/hs.fdc3a06e6ad84

2abacfa5b896df73a76. For detailed instructructions on Notebook ac-
cess, see Section 3.1.4 or the ReadMe found at the HydroShare link.

4. Discussion

Broadly speaking, knowledge infrastructure can be considered a
social construct – components of hardware and software are built by a
community of developers based on a perceived need, or by employing
user experience research to guide design decisions. When the advanced
cyberinfrastructure has evolved to knowledge infrastructure the design
of the software system is a creative and problem-solving endeavor de-
veloped with a community committed to using it for their research and
education, with feedback and investments of resources. We discussed
knowledge infrastructure as a web-based system of tools that can be
adapted and co-opted to develop technological and sociological solu-
tions to emerging problems of complex systems by efficiently con-
necting researchers, their data and models, private and public users,
and funders committed to long-term maintenance and operations of
distributed computing resources. Through the work of developing a
description of how others can interact with our Earth surface model
results, we learned that the system outlined in Fig. 1 is just one reali-
zation of how to synthesize components to run Landlab models on
HydroShare. We expect that this model will evolve with each research
application, model, and user, especially as technology advances and
user input improves usability. All users benefit when systematic pro-
cesses support training for learning new tools and incorporating
emerging technology into scientific methods.

There are two main challenges to conducting sophisticated Earth
surface model applications, 1) they are computationally and data in-
tensive, and 2) communication of methods and results through tradi-
tional peer reviewed journal publications, conference presentations, as
well as student-mentor and peer-peer relationships, may not be efficient
at ensuring reproducible results. Here we consider “reproducible” to
include both the ability to replicate published results (e.g. testable by
editors, reviewers, or readers), and to reuse the research products as a
baseline for future studies (e.g. accessible code and data).

Fig. 7. Climate data downloaded and processed from Livneh et al. (2015). a) Annual precipitation plotted with respect to time for each elevation band. b) Mean
monthly daily minimum and maximum temperatures for each elevation band.
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Reproducibility in Earth surface modeling is time and resources ex-
pensive; and addressing the challenges above is common across most of
computationally intensive sciences requiring research software devel-
opment. For example, a spatially distributed numerical model appli-
cation for landslide risk should be reproducible both at the site where
model is calibrated and applied in a paper, and the cyberinfrastructure
should provide the flexibility for the same model to be applied at an-
other site just by changing several spatial inputs on the same platform.
For another example, an individual researcher may choose a personal
cyberinfrastructure system (Horsburgh et al., 2016a,b) that they design,
develop, and/or inherit from colleagues. Whereas a research colla-
boration, such as a study by multiple domain scientists and institutions,
may require co-design of a community knowledge infrastructure to ad-
dress a broad range of formal and informal processes that support the
ongoing development of research products.

We submit for consideration by the Earth surface research com-
munity that more attention on system design for both personal cyber-
infrastructure and shared knowledge infrastructure, will accelerate our
research productivity. The aim is to deploy the latest technologies in
such a way as to minimize the researchers’ effort to acquire expertise in
technologies outside their domain, and to better enable domain scien-
tists to focus their attention on the theoretical underpinnings and de-
velopment of new process-based understanding of the Earth system. In

the current rapidly evolving environment of computer technologies, the
community of researchers often needs to keep pace with technological
advancements, such as new computational platforms (high performance
and cloud computing), open source modeling frameworks, and software
paradigms, libraries and tools. We identified barriers that can be ad-
dressed with knowledge infrastructure design in research (Section 4.1).
We found that these barriers can be lowered by including user input in
the system development process (Section 4.2), which we expect to ad-
vance science through simultaneously supporting both inductive and
deductive learning processes (Section 4.3).

4.1. Defining five common barriers

Using two User Centered Design methods (Devi et al., 2012), Expert
Review (with Landlab researchers) and Guided Walkthrough (with tu-
torials in workshops and classrooms), we outline the following five
common barriers, and sought to lower these for more students and
researchers by utilizing community resources for numerical modeling:

1. Unclear processes in conducting open research. Vocabulary,
workflow, and metrics for success are not well understood and
standards of practice are at the early stages of development.

2. Technological requirements for hands-on learning. Training and

Fig. 8. Spatial Organization of PFTs at year 1503 (left column) and Annual areal cover fraction of each PFT plotted with respect to time (right column) for; a) low
elevation landscapes (1200m–1700m), b) mid elevation landscapes (1700m–2000 m), and c) high elevation landscapes (2000 m–2500m).
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workforce development using large datasets and high-performance
computing requires expertise beyond the experience of most domain
scientists.

3. Hardware and software requirements for using online infra-
structure in workshops and classrooms. Software installations
and model run time on local computers limits the time available to
introduce new concepts and tools.

4. Compiled observations and research products (e.g. model re-
sults) are difficult to access. Data-driven introduction to science
concepts is time intensive and there are no best practices for class-
room interaction with large datasets and coupled spatial-temporal
visualizations of published model results.

5. Time investment and expertise required to begin using a com-
plex model is too high. In many collaborations, only one model
expert can execute, interact and manipulate the model, which limits
building deeper understanding and communicating about im-
plementing new ideas.

4.2. Development based on user input

Knowledge infrastructure can be effective at lowering common
barriers if it is designed based on input of users. User information may
include cultural, formal, and informal preferences for conducting re-
search and sharing data. For example, design of knowledge infra-
structure to to improve communications among users is generally per-
ceived to have the potential to lead to rapid advancements in process
and system-level understanding through data analysis and modeling.
Scientists and users from multiple research and decision-making com-
munities have shared needs to expand their understanding of processes
at specific locations on the Earth surface. For research communities, the
focus is always on advancing scientific understanding. For other user
communities, such as those applying the latest research to improve data
collection, or operating resources based on observational and modeled
data, the focus may be on incrementally developing systems to use the
gained knowledge to adapt to changing conditions (Mees, 2017; Dilling
et al., 2017; Hughes S.A., 2014; Nalau et al., 2015; Baker et al., 2012).
Regardless of the structure of the system, users and developers want a
simple work experience where they launch a web browser and quickly
get to work. Regardless of what the purposes of modeling and the
background of users might be, functional knowledge infrastructure
should give enough confidence to users to run models, reproduce and
reuse model applications, analyze results, and communicate their
findings and unique perspectives on the complex system behavior they
are investigating.

4.3. Development to advance science

To encourage continuous scientific advancement in the Earth sci-
ence domain, we advocate that researchers develop their data and
models using knowledge infrastructure that enables replication and
reuse, and consider leveraging open source data and research software
wherever possible. This approach is ideal for graduate education where
data and models published using shared standards in an open source
system can be replicated, reused and advanced by other investigators.
Additionally, code reproducibility may shorten the learning curve for
modeling, allowing more time to progress research in a domain of
science that is supported by using the model, and not distracting from
work on a primary research questions with data and modeling technical
issues. If a user follows an inductive learning narrative, they may use a
workflow (Fig. 9, top to bottom workflow) that starts with a new idea,
and ends with testing a hypothesis, or an inductive learning approach
(Section4.3.1). If a user follows a deductive learning narrative (Section
4.3.2), they may begin with a pre-existing experiment or toolset, test a
hypothesis, and then develop new ideas from what they learn during
the tests (Fig.10, bottom to top workflow). Next, we describe how both
inductive and deductive narratives are supported.

4.3.1. Inductive learning approach
An inductive learning approach develops evidence and inference by

selecting a hypothesized process representation within a system (e.g.,
landscape), testing that hypothesis, and depending on the outcome
develop a refined hypothesis of the process and further design testable
numerical and field experiments (Pfister and Kirchner, 2017). This
approach is crucial for advancing theoretical concepts for each process
and identifying process couplings. Most Earth science models require
laborious work to make them suitable for inductive learning. Recent
component-based frameworks like Landlab (Hobley et al., 2017) and
SUMMA (Clark et al., 2015a, 2015)) are developed with the perspective
that they can be used for inductive learning and research centered on
developing a new idea and making use of other published and tested
components in the complex system to test one new idea at a time.

4.3.2. Deductive learning approach
A deductive approach is useful when given a precompiled set of

model inputs, outputs, and coupled system of process models; the user
or cooperative research group can develop new hypotheses to test given
emerging research and new observations. This is a common workflow in
science and engineering. After a model in published, the code and data
are shared such that when new observations or tools are added during
continuing research, these addenda are added to an existing library and
new ideas for tools, experiments, and data collection emerge and ad-
vance the next steps of research.

The preliminary development of Landlab focused on workflow de-
signs where users would begin code development by testing new ideas
using published Python scripts to develop process representations of
individual Earth system processes. The result is a Landlab environment
(Fig. 9) with an ecosystem of process components, where users can test
new ideas resulting in the development of new components that con-
tribute to a shared and expanding library. While it is common in Earth
surface numerical modeling communities to build on and contribute to
existing models, the Landlab approach provides a way for new users to
begin learning and contributing by developing simple Python scripts
that could be executed from a terminal command line. Landlab provides
a means for new users to use an inductive learning approach to study
one Earth surface process at a time, without having to first master the
use of pre-existing complex model and to contribute code to expand
processes represented in the model. Running Landlab on HydroShare
(Fig. 1) provides new users the opportunity to quickly begin exploring
Landlab models with minimal software requirements (a web browser
and internet connection). Landlab and HydroShare development and
research community can continuously improve and evolve, for ex-
ample, by implementing an automated updating system that would
maintain Landlab version on HydroShare with automated tests the
ensure new versions of Landlab continue working with all HydroShare
resources that use Landlab.

5. Conclusions

To illustrate how common barriers to Earth surface modeling can be
lowered using knowledge infrastructure, we have developed three in-
teractive computational narratives using Landlab on HydroShare.
Landlab is a recently developed Python-based Earth surface modeling
toolkit (Hobley et al., 2017). HydroShare is a web-based system that
can be used to store, share, and publish hydrologic data and models
(Idaszak et al., 2017; www.hydroshare.org). The infrastructure design
and methods are illustrated as an interchangeable set of hardware and
software components. For our case study we combine an online com-
munity repository (HydroShare), modeling framework (Landlab), soft-
ware environment (dockerized JupyterHub server), and storage
(iRODS), with a community approach to advancing scientific progress
using Earth surface models. We demonstrate how to use this system in a
classroom setting to explore spatio-temporal data, network processes
(e.g. hydrologic routing), replicate published results from a complex
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model in a controlled software environment (e.g. landslide model
sensitivity to fire-related parameters), and how to use the same system
to reuse flexible components to design a model experiment (e.g. eco-
hydrology model sensitivity to elevation and climate) that can be used
generate new results in any location in the continental United States.

The use cases we present have been designed to illustrate a range of
functions and show the benefits of using knowledge infrastructure, to
transform how researchers share, publish and distribute knowledge,
given a range of science topics to address common challenges to using
online systems for collaborative numerical modeling. In the past, run-
ning distributed hydrology, landslide and ecohydrologic vegetation
dynamics Landlab model components required access to a powerful
computer, an installation of Python, and an installation of Landlab.
Now, any user can log into HydroShare through an internet browser
from any computer or handheld device and run this model, without
having to install any software. The user can explore the models further
by changing the model parameters, climate forcings, or building their
own model with community support. The demonstrated knowledge
infrastructure, enabled by advanced cyberinfrastructure, is designed to
support researchers in more efficiently advancing Earth system
knowledge.

Software and/or data availability

● Models described in this manuscript are available on HydroShare.
Citation: Bandaragoda, C., A. M. Castronova, J. Phuong, E.
Istanbulluoglu, S. S. Nudurupati, R. Strauch, N. Lyons, K. Barnhart
(2019). Enabling Collaborative Numerical Modeling in Earth Sci-
ences using Knowledge Infrastructure: Landlab Notebooks, https://
zenodo.org/badge/latestdoi/187289993, accessed 5/30/2019, re-
plicated in HydroShare at: https://doi.org/10.4211/hs.
fdc3a06e6ad842abacfa5b896df73a76.

● Landlab can be installed from conda-forge. with Windows 7+, Mac
OS 10.6+, or Ubuntu LinuxOGH v.1.5.4 is released on GitHub
(https://github.com/landlab/landlab/releases), and is freely avail-
able under an MIT license. This GitHub repository is maintained by
the Landlab development team.

● The Landlab Python library is also vailable within a JupyterHub-
Unix docker environment hosted on the CUAHSI HydroShare server.

● Tutorial/Use-case notebooks for developers can be found at the
GitHub repository https://github.com/ChristinaB/pub_
bandaragoda_etal_ems and the HydroShare resource ( https://
www.hydroshare.org/resource/
fdc3a06e6ad842abacfa5b896df73a76

Acknowledgments

We acknowledge funding from NSF for HydroShare ACI-1148453
(Tarboton, Bandaragoda), ACI-1148090 (Idaszak), OAC-1664018
(Idaszak), OAC-1664061 (Bandaragoda, Idaszak, Tarboton), and OAC-
1664119 (Wang), CUAHSI EAR-1338606 (Castronova), and the Com-
munity Surface Dynamics Modeling System (CSDMS) (EAR-1831623).
These development grants supported a team including the Consortium
of Universities for the Advancement of Hydrologic Science, Inc
(CUAHSI), Utah State University, Brigham Young University, Tufts
University, University of Virginia, University of Washington, National
Center for Atmospheric Research (NCAR), Purdue University, Uni-
versity of Texas at Austin, and San Diego Supercomputing Center for
the development of the HydroShare platform (http://www.hydroshare.
org) from 2012 to 2018. For ROGER supercomputing OAC-1429699
(Wang), and Advanced Cyberinfrastructure, OAC-1443080, OAC-
1429699, and OAC-1047916 (Wang), and CyberGIS ACI 1047916
(Wang, Idaszak). For Landlab OAC-1450412 (Istanbulluoglu), OAC-
1147454, OAC-1450409 (Tucker, Hobley), OAC-1450338, EAR-
1349375, The Oliver Fund of Tulane University (Gasparini, Lyons); and
for landslide research, CBET-1336725 (Istanbulluoglu). Barnhart ac-
knowledges an NSF EAR Postdoctoral Fellowship (EAR-1725774). This
project received partial funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 663830 (Hobley). The authors are grateful
for this diversity of contributions. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors
and developers and do not necessarily reflect the views of the NSF or
other funding organizations. All data and code used in this research are

Fig. 9. Illustration of community learning and discovery
process by code access and utilization among scientists.
Key: Triangle= Synthesis/Merge, Circle=Connector,
Square=Process, Quadrilateral=Manual or Machine
Operation, Cylinder=Database. Inductive processes are
supported when, for example, a Landlab user has a new
idea for a component, develops the Landlab application,
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available on Github (Landlab and HydroShare organizations) as well as
HydroShare (www.hydroshare.org) where readers can Collaborate,
Join the public Landlab Group, and view shared public data described
in this paper.

Abbreviations

KI Knowledge Infrastructure
CI Cyberinfrastructure
CUAHSI Consortium of Universities for the Advancement of

Hydrologic Science, Inc.
CSDMS Community Surface Dynamics Modeling System
ICTs Information and communication technologies
GUI Graphical user interfaces
PC Personal computer
HPC High performance computing
CHPC Cloud-based high-performance computing
SOA Services Oriented Architecture
OAI-ORE Open Archives Initiative Object Reuse and Exchange stan-

dard
DOI Digital object identifier
REST Representative State Transfer
API Application programming interface
SUMMA Structure for Unifying Multiple Modeling Alternatives
NWM National Water Model
ODM2 Observation Data Model 2
XSEDE Extreme Science and Engineering Discovery Environment
ROGER Resourcing Open Geospatial Education and Research super-

computer
UX User experience
MODFLOW The USGS Modular Three-Dimensional Finite-Difference

Ground-Water Flow Model
TAUDEM Terrain Analysis Using Digital Elevation Models
SWAT Soil and Water Assessment Tool
WEPP Water Erosion Prediction Project
WILSIM Web-based Interactive Landform Simulation Model
NOCA North Cascades National Park Complex
SSURGO Soil Survey Geographic Database
CATGrass Cellular Automata Tree-Grass-Shrub Simulator
PFT plant functional types
MAP mean annual precipitation
PET potential evapotranspiration

Appendix A. Supplementary data

Supplementary data to this article can be found online athttps://doi.
org/10.1016/j.envsoft.2019.03.020.
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